Inhibition of p38 MAPK signaling promotes late stages of myogenesis.

نویسندگان

  • Andrea D Weston
  • Arthur V Sampaio
  • Alan G Ridgeway
  • T Michael Underhill
چکیده

Signaling through the p38 mitogen-activated protein kinases (MAPKs) is essential for cartilage formation in primary cultures of limb mesenchyme. Here we show that, concurrent with a decrease in chondrogenesis, inhibition of p38 in limb bud cultures dramatically promotes muscle development. Specifically, treatment of primary limb bud cultures with p38 inhibitors increases the expression of myogenic markers and causes a striking increase in formation of myotubes, which were detected using antibodies specific for myosin heavy chain. These results are surprising in that they contrast with several previous reports describing a requirement for p38 during myogenesis. Nonetheless, the enhanced myogenesis leads to the formation of an extensive network of contractile myofibers, and this enhanced myogenesis can be conferred upon myogenic cells from clonal populations, such as G8 or C2C12 cells, if they are co-cultured with the limb mesenchymal cells. We provide evidence for the maintenance and rapid organization of existing, somitic-derived limb myoblasts in response to p38 inhibitors. These findings imply a novel and unexpected role for p38 MAPK inhibition in myogenesis and highlight the importance of the limb bud microenvironment in promoting the progression of limb myoblasts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inactivation of mitogen-activated protein kinase signaling pathway reduces caspase-14 expression in impaired keratinocytes

Objective(s):Several investigations have revealed that caspase-14 is responsible for the epidermal differentiation and cornification, as well as the regulation of moisturizing effect. However, the precise regulation mechanism is still not clear. This study was aimed to investigate the expression of caspase-14 in filaggrin-deficient normal human epidermal keratinocytes (NHEKs) and to explore the...

متن کامل

p38 MAPK-induced nuclear factor-kappaB activity is required for skeletal muscle differentiation: role of interleukin-6.

p38 MAPK and nuclear factor-kappaB (NF-kappaB) signaling pathways have been implicated in the control of skeletal myogenesis. However, although p38 is recognized as a potent activator of myoblast differentiation, the role of NF-kappaB remains controversial. Here, we show that p38 is activated only in differentiating myocytes, whereas NF-kappaB activity is present both in proliferation and diffe...

متن کامل

Akt2, a novel functional link between p38 mitogen-activated protein kinase and phosphatidylinositol 3-kinase pathways in myogenesis.

Activation of either the phosphatidylinositol 3-kinase (PI 3-kinase)/Akt or the p38 mitogen-activated protein kinase (MAPK) signaling pathways accelerates myogenesis but only when the reciprocal pathway is functional. We therefore examined the hypothesis that cross-activation between these signaling cascades occurs to orchestrate myogenesis. We reveal a novel and reciprocal cross-talk and activ...

متن کامل

Phosphorylation of MRF4 transactivation domain by p38 mediates repression of specific myogenic genes.

Skeletal myogenesis is associated with the activation of four muscle regulatory factors (MRFs): Myf5, MyoD, Myogenin and MRF4. Here we report that p38 mitogen-activated protein kinase represses the transcriptional activity of MRF4 (involved in late stages of myogenesis), resulting in downregulation of specific muscle genes. MRF4 is phosphorylated in vitro and in vivo by p38 on two serines (Ser3...

متن کامل

SHP-2 complex formation with the SHP-2 substrate-1 during C2C12 myogenesis.

Myogenesis is a highly ordered process that involves the expression of muscle-specific genes, cell-cell recognition and multinucleated myotube formation. Although protein tyrosine kinases have figured prominently in myogenesis, the involvement of tyrosine phosphatases in this process is unknown. SHP-2 is an SH2 domain-containing tyrosine phosphatase, which positively regulates growth and differ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 116 Pt 14  شماره 

صفحات  -

تاریخ انتشار 2003